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UK 

Received IO December 1993 

Abstrad. We show that some examples in the literature of non-standard symmetry reductions 
of ordinary differential equations can be understwd using the concept of a solvable smc~ure of 
one-forms. 

1. Introduction 

The presence of a solvable Lie algebra of Lie symmetries of a set of differential equations 
allows the systematic reduction of the order of the system and thus its integrability by 
quadrature. That such a condition is sufficient, but not necessary, for integrability by 
quadratures is well known and variants of the 'classical' approach are available, enabling 
one to search for exceptions. 

In this paper, we wish to focus on one particular class of examples of a kind Olver 
illustrated, by way of warning, in [I]. The case at hand occurs when the system obtained 
by symmetry reduction possesses a symmetry which is not a symmetry of the unreduced 
system. In [2], Guo and Abraham-Schrauner enact a systematic search for examples of 
this kind by starting with a separable first-order ordinary differential equation (ODE) and 
extending it to a second-order ODE using the differential invariants of a Lie symmeby. At 
the end of the paper, they give a table of second-order ODES, obtained by this method, 
the members of which possess only one Lie symmetry but acquire a new symmetry upon 
reduction and are therefore solvable by quadratures. The symmetries of the reduced ODES 
are referred to as type I1 hidden symmetries of the unreduced ODES. 

Our purpose here is to show that Olver's example, and those in [2], are all simply 
understood by recourse to a generalization of solvable algebras called solvable strucmres. 
This name is due to Basarab-Horwath who has given a general description of their integrable 
properties in [3]. 

In this paper, we describe solvable structures and their relationship with ODES. After 
stating a precise definition of solvable structures in terms of vector fields which is equivalent 
to the one given by Basarab-Horwath in [3], we develop the dual picture in terms of one- 
forms and re-establish some of BasarabHorwath's results from that point of view. In the 
next section, we spell out the relationship between solvable shllctures and ODES. In the 
concluding section, we exhibit an example calculation for the equation mentioned by Olver 
in [I] and give the results for all the cases given by Guo and Abraham-Schrauner in 121. 

Throughout the paper we assume that we are.yorking on an open simply connected 
subset D" of R". Functions are usually assumed to be smooth and well defined on D". 
The phrase '(linearly) independent on D"' means pointwise linearly independent at every 
point of Do.  This notion of linear independence implies that independent vector fields or 
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oneforms are not allowed to vanish at any point of D". Where necessary, the reader should 
assume that the domains have been restricted accordingly. 

T Hart1 and C Athome 

2. Solvable structures 

Before we smt, we have to inhoduce some notation and definitions of modern differential 
geometry (such as in [5]). Let ixo denote the interior product (contraction) of a differential 
form w (completely anti-symmetric contravariant tensor) with a vector field X. Further, 
let do denote the exterior derivative of a differential form. A function is interpreted as a 
zero-form, its exterior derivative being given by the differential of the function. In addition 
to that, we will only require the exterior derivative of a one-form, which can be defined in 
the following way: 

d w ( X ,  Y )  = X ( i y o )  - Y(ixo) - i[x,y]o (1) 

for any one-form o and arbitrary vector fields X and Y. Also, let . A . denote the exterior 
product of two forms or two vectors (completely anti-symmetrized tensor product). The 
following identities hold 

i;=o 

ix(ol A 02) = ixol A q + (-W'WI A ixoz 

i x h y o  = ixiyo 

ixf = O  

ixdf  = Xf 

for all functions j, differential forms o, q and p-forms W I  and all vector fields X, Y. The 
Lie derivative CX of a form with respect to the vector field X can be defined as 

t x  = dix + ixd (2) 

and the following identities hold: 

Lx(fw) = f t x w  + ( X f h  

Lcx(oi A Y )  = (ExWi) A 6.9 + WI A (LxW) 

for all functions j, differential forms o, o l , a  and vector fields X. The Lie derivative 
t x Y  of a vector field Y with respect to the vector field X is the same as the commutator 
[X, Y]. The following commutation rule for Lx and iy holds when they are acting on a 
differential form 

C X ~ Y  - iyLx = i[x.y]. (3) 

Now, let X = { X l , X z .  ..., X r ]  be a system of independent vector fields on Dn 
which are in involution, i.e. there extc smooth functions 4,.. i, j ,  k = 1,. .. , r such that 
[Xi, Xj] = c$Xk where we employ the summation convention for repeated indices. 
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Definition 1. A nowhere-vanishing vector field Y on D" is called a symmetry of an 
involutive system of independent vector fields X, as just described, iff the following 
conditions hold: 

(i) XI, .  . . , X,, Y are independent; and 
(ii) there exist smooth functions d ( k ,  i = 1, .  . . , r )  such that [Xi, Y] = d X k .  

We would like to point out that this definition represents a generalization of the idea of a 
Lie point symmetry. Here, and in the following, the term system is used loosely and simply 
refers to a collection of objects (vector fields or oneforms). Given a system S, span S stands 
for the Z(D")-linear space obtained by taking Z(D")-linear combinations of th_e objects in 
S where Z(D") is the ring oft$ smooth functions on D". Two systems, Sand  S, are called 
equivalent if the objects in S can be expressed as non-singular (invertible) R(D_n)-linear 
combinations of the objects in S at every point of D". Note that span S = span S. 

Let 61 = (o l ,  . . . , d) be a system of independent one-forms on D" which is closed, 
i.e. there exist smooth one-forms h:(k, l = 1,. . . , s) such that dur' = 

Definition 2. A nowhere-vanishing vector field Y on D* is called a symmetry of a closed 
system of independent one-forms 61, as just described, iff the following conditions hold 

A d. 

(i) at every point in D" there exists j ( 1  Q j Q s) such that i y d  # 0; and 
(ii) there exist smooth functions c:(k, I = 1,. . . , s) such that Cymk = cfd. 

For every system of independent vector fields X = {XI, .  . . , X,) there exists a 
corresponding system of independent one-forms Ct = (U ' ,  . . . , on-') which is necessarily 
and sufficiently characterized by 

iX,w' = O  (k= 1 ,... , r ; l =  l , . .  .,n - r ) .  (4) 

Equation (4) is obviously not affected by replacing X or 61 with equivdent systems 3 or 
6, respectively. The linearity properties of the interior product also imply that 

i x p  = O(Vk = 1,. . . , r )  + w E span61 

iyw' =OW! = 1, ..., n - r )  + Y E s p a n x  

(5) 

(6) 

for all one-forms w and vector fields Y. Now, let X. Y E span X and o E span 61. Consider 
i[x,rlw; using the commutation rule (3) and equations (2), (5) and (6) we obtain 

i [ x , y p ~  = dm (X, Y ) .  (7) 

From this we can deduce the following lemma. 

Lemma 1. Let X and Ct be corresponding systems of independent vector fields and one 
forms, respectively, as just described. Then, X is involutive iff 61 is closed. 

We also have the following result. 

Lemma 2. Let X be an involutive system of independent vector fields and let S2 be a 
comspondmg closed system of one-forms. A vector field Y is a symmetry of X iff Y is a 
symmetry of a. 
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Pmof. Let X = (XI, ..., Xr} and 51 = Io', ..., on-']. Note that by equation (4)  
iXkw' = O(k = 1,. . . , r ;  i = 1,. . . , n - r ) .  Hence, using commutation relation (3), we 
obtain 

T Harti and C Athorne 

i [ r ,x*p l  = -ixh&Yo'. (8) 

If Y is a symmetry of X then the left-hand side equals 0 by (4) and using (6) we deduce 
that Y is a symmetry of A?,. If Y is a symmetry of 51 then the right-hand side equals 0 
by (4) and using (6) we deduce that Y is a symmetry of X, which completes the proof. 
We would like to point out that part (i) of definition 1 directly corresponds to part (i) of 
definition 2. 0 

Let [X, 
solvable structure is. 

DeJinition 3.  We say that the system ( X ,  Yn-r] is a solvable structure with respect to the 
involutive system X iff E(1 = 1,. . . , n - r )  is a symmetry of the system (X, E-,]. 
Note that, in general, the E do not form a solvable algebra. 

Let us now construct a dual version of the solvable stucture [X, Yn-,} in terms of 
one-forms. Let or, . . . , on-' be a set of independent one-fom-such that i p s  = 1 
(no summation) and os = 0 on [X, Y1, ..., Y,, .... Yn-,] where Y, denotes omission of  
Y, (s = 1, . . . , n - r ), Before proceeding let us introduce the following notation. Let 
Z((ol, ..., os]) be the ideal generated by OJ', . . . , Os undertaking exterior products and let 
Z(0) = [O]. The system to', . . .,on-') has distinguishing closure properties undertaking 
exterior derivatives: 

Proposition 3.  For all s = 1, . . . , n - r ,  we have 

= (XI,. . . , X,, Y,, ..., E] and let (X, YO] = X. We can now define what a 

doS E Z((obt', . . . ,w"-']).  

Proof. From the way in which the os are defined, it immediately follows that ( X ,  Ys] and 
[est', . . . ,U"-'} are corresponding systems of vector fields and one-forms, respectively. 
Hence, in order to prove proposition 3, it is sufficient to show that do' (V, W )  = 0 for 
arbitrary elements V and W of spanlX, Y,]. Using equation (1) we obtain 

dw" ( V ,  W) = V(iw0S) - V ( i w o s )  - i Iv ,wp".  

We continue by decomposing V and W with the help of os. Throughout this proof, 
summation over repeated indices is not intended. Let V, = (ivws)Ys and vt = V - V,. 
Similarly define W, and ps. Clearly vs and Wr are in span(X. z-11 while V, and W, 
are multiples of Y,. We also have V = V, + vr and W = W, + wt. Putting these in the 
above equation, and taking account of the fact that Os kills everthing in span[X, Ys-l), we 
are left with 

dwS(V, W )  = V ( i w p ' )  - W ( i , o ' )  - i r v , . w , l t l v ' . ~ , l t r . w , l ~ ~ ~  (9) 

- Observe that [V,, WJ = K(iw,Os)K - W ~ ( i v , o r ) Y s , - [ ~ , ~ s l  = ( i v , d ) l Y s , V a l  - 
W,(iv,Os)Y, and lv3, W,] = v s ( i w , d ) Y s  + ( i , O s ) [ V , ,  Y,]. Furthermore, note that 
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[Ys,w,?1 and [v3, K.1 are elements of span{X, x-1) since Y, is a symmetry of the system 
{X, K-1). Evaluating the inner product in equation (9), therefore, results in 
i , " ' , W ' ] + , " " , ~ , ] + [ ~ ~ , W , ] U ~  = K ( i W . 4  - V"(hW7 - ~ ~ ( i v , w " ) + ~ ~ ( i w " U , r )  

= V ( i , d )  - W(iV,O"). 
Putting this in equation (9) finally gives us the required result 

d d  ( V ,  W) = 0 
which completes the proof. 0 

There is a converse to the last proposition. 

Proposition 4; A system of independent one-forms w l ,  . . . , on-' with the propelty that 
dws E I((O"+', . . . , U"-')) for all s = 1,. . . , n - r corresponds to a solvable structure 
I X ,  YL}. 
Proof. Let X = (XI, . . . , X,) be a system of independent vector fields which corresponds 
to the closed system of independent oneforms formed by w l ,  . . . , on-' . Define Ys 
(s = 1,. . . ,n - r )  by requiring that thoughout D", i y , d  = 1 if j = s and i Y i d  = 0 
for j # s ( j  = 1,. , , , n - r ) .  By lemma 1 the system X is clearly involutive since it 
corresponds by definition to the closed system formed by the ws. Furthermore, the definition 
of the Y, guarantees that they are independent of each other and the system X. Again, 
throughout this proof, summation over repeated indices is not intended. In order to prove 
that Y, is a symmetry of {X, x-l), we make use of lemma 2 and show that Y, is a symmetry 
of ( O S , .  . . , U"-'). For the latter, by equation (5), it is sufficient to show that ixLy,d = 0 
for all j = s, . . . , n - r and any X E span(X, Ys-l). Using equation (2) we get 

But i y , d  is 1 or 0 and dwj is certainly in I({ws+', .. . ,U"-'}) because of the closure 
properies of the os and, therefore, vanishes if it is applied to two vectors from span(X, Ys). 
Hence, we can deduce 

iXLY,d = ix d(i,oj) + i g ( i y ,  d d ) .  

iXLY,Wj = 0 
which completes the proof. 0 

Given the correspondence established by propositions 3 and 4, it makes sense to say 
that a system of one-forms which have the closure properties assumed in proposition 4 is 
a solvable structure in its own right. For this reason we are led to introduce the following 
definition. 

Dejinition 4.  The system of independent one-forms 0'. . . . , oh (1 < k < n) on D" form 
a solvable structure iff for all j = 1, . . . , k 

dwj E Z ( ( W ~ + ~ ) ,  . . . ,U ' ) ) .  

By integrating a closed system Cl of k independent one-forms we mean finding a system 
of coordinates for D" such that keeping k of the coordinates constant gives a submanifold 
of D" on which hl vanishes. By integrating an involutive system X of r independent 
vector fields we mean finding a coordinate system for D" such that X is tangential to a 
submanifold of D" defined by keeping n - r  of the coordinates constant. In both cases, such 
coordinate systems can generally only be defined locally in the neighbourhood of regular 
points. A moment of reflection reveals that integrating a closed system of one-forms is 
equivalent to integrating a corresponding involutive system of vector fields and vice versa. 
The same applies to equivalent systems. 
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Proposition 5. Solvable structures of one-forms or vector fields can be integrated, at least 
locally, by quadratures alone. 

Proof. The vector-field case can be reduced to the one-form case by integrating a 
corresponding solvable structure of oneforms such as the one we constructed in the proof 
of proposition 3. Now, let d, . . . , ok form a solvable structure of one-forms. In particular, 
this implies that dok equals zero. Therefore ok can be integrated by quadrature since D" 
is simply connected. If one restricts attention to the submanifold defined by keeping U' 

constant, one finds that the restrictions of ol, . . . , ut-' form a solvable structure on this 
submanifold. One can, therefore, integrate the restriction of do?-] on this submanifold by 
quadrature. We can continue in this fashion by further restricting the submanifolds at each 
stage until we'have finally integrated the (k - 1)th restriction of U ' .  At this point we have 

0 

We would like to point out that a solvable structure. as introduced here, is a purely 
geometrical concept concerned with the integrability by quadratures of certain systems of 
vector fields or one-forms. Solvable structures may prove useful in the study of differential 
equations wherever the problem at hand can be reformulated as the task of integrating an 
integrable system of vector fields or one-forms. We will show how this is done for ODES in 
the next section. The generalization of our approach to systems of ODES is straightforward. 
The geometrical representation of partial-differential equations (PDE)s with more than one 
independent variable generally does not lead to an integrable system of one-forms because 
one has to append higher-order forms to achieve closure on taking exterior derivatives. 
Nevertheless, there is scope for utilizing solvable structures in the process of solving PDES 
for tasks such as the integration of characteristic equations or determining the invariants of 
flows. 

One might suspect that solvable structures should somehow fit into the framework 
of non-classical or conditional symmetries (the concept of 'non-classical' symmetries was 
introduced by W Bluman and J D Cole in 1969; since then, a vast number of publications on 
the subject has been produced and we refer the interested reader to a selection of recently 
published books for further reading and references; cf [6]). There are variations on the 
theme but basically a conditional symmetry does not preserve the original system of PDES 
but an augmented system which consists of the original system together with some additional 
equations. The symmetries we encounter in the context of solvable structures generally do 
not preserve the original system either, but this time the system preserved by the symmetry 
is obtained by weakening the constraints of the original system and not by adding new 
ones. It, therefore, becomes clear that the two concepts are quite different. 

T Hart1 and C Athorne 

fully integrated the system of one-forms. 

3. Solvable struelures and ODES 

Before we can apply the theory developed above to ODES, we have to develop an appropriate 
geometric representation of a general nth-order ODE. Let the ODE be given by 

for some smooth function F on a open subset On+' of W2, where y(l) = diy/dxl 
( j  = 1, . . . , n). Any solution y ( x )  corresponds to a one-dimensional submanifold of Dnt2, 
where x ,  y ,  yu) are now treated as independent coordinates on On+*. Conversely, making 
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use of Cartan's work, we know that a one-dimensional submanifold C of which 
contains a generic point of the submanifold defined by F = 0, corresponds to a solution 
of equation (10) if the system of one-forms n p  formed by d F  and the contact forms 
aj = dyu) - yU+l) dx ( j  = 0,. . . , (n - I ) ,  y(O) = y) vanish on E. Provided d F  is 
independent of the contact forms (this is always true if aF/ay(")  # 0), SaF is automatically 
closed because any system of n + 1 independent oneforms on DntZ is closed. Hence, we 
do not have to worry about integrability conditions. Since Sap is closed, the existence of 
solutions near a generic point x such that F&I = 0 is guaranteed by Frobenius' theorem. 
Let Sa = [U ' ,  . . . , wnfl) be a solvable shucture of one-forms. If Sa is equivalent to Sap then 
integrating Sa is equivalent to integrating Sa,=. Now, consider the resulting coordinate system 
in which integral manifolds to S ~ F .  are obtained by keeping n+ 1 coordinates constant. When 
expressed as functions of x,  y, ~ ( ' 1 ,  . . . , y("), the constant coordinates can be interpreted as 
n + 1 independent first integrals of the ODE given by equation (10) and, by inverting the 
whole system, one obtains y as a function of x and the constants, which gives a general 
solution of equation (10). For this reason, applying proposition 5 gives us the following 
preposition. 

Proposition 6. Given a solvable structure C2 such that Sa is equivalent to n ~ ,  as just 
described, we can locally solve the ODE given by equation (IO) by quadratures alone. 

We would like to point out that this method of using generalized symmetries for the 
complete integration of ODES is not found in the standard literature on the subject. It is, 
however, indicated by Basarab-Honvath in [3]. 

Let us now turn to the question of how to find a solvable structure which is equivalent 
to a given closed system of one-forms. In theory, every closed system Sa is equivalent to 
some solvable structure. To see this, consider any coordinate system in which the integral 
submanifolds of C2 are obtained by keeping an appropriate number of these coordinate 
functions constant. The diserentials of these coordinate functions are obviously all exact 
and therefore can be thought of as forming a solvable structure. Given that degree of 
generality, one should not expect that one will always be able to find a solvable structure 
equivalent to a given closed system of one-forms. Bearing this caveat in mind, the procedure 
for attempting to find a solvable structure for a given closed system of one-fonns is 
straightforward. Let fix = {ai, . . . , ay-r] be a closed system of independent one-forms 
and let X = {XI,. . . , X r ]  be a corresponding system of independent vector fields which 
are in involution. First, we try to find a symmetry YI of Sax. Alternatively, by lemma 2, 
one can find YI by requiring that it is a symmetry of X. If successful, we can choose o1 
and ai, . . . , which form a system of independent one-forms equivalent to Sax and 

(X, l5). By adapting the proof of proposition 3, one can show that dw' E T(Sa,x,x1). It is 
easy to see that by carrying on, if possible, one will eventually end up with a solvable 
structure of one-forms [d, , . . , on-'] which is equivalent to Sax and a corresponding 
solvable structure of vector fields [X, Yn-,]. If convenient, one can also first determine the 
solvable structure of vector fields [X. YL?] and then obtain the Os by requiring that they 
are dual to the Y, (s = 1,. . . , n - r ) .  

We now want to explain the relationship between the solvable-structure approach and the 
classical Lie point symmetry reduction. Let Y1 be a Lie point symmetry of the ODE given by 
equation (10). A Lie point symmetry corresponds to a point transformation in the space of 
the independent and dependent variables. In our case, this implies that there exist functions 
f = f (x ,  y) and j ;  = g(x ,  y) such that Y ' ( i )  = 0 and Yl(j) = 1. In the classical approach, 

have the following properties: i y , w l  = 1 and Salx,y,l = {a2, I . . . , corresponds to 
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the reduction is achieved by determining these functions i and j and then transforming to 
new coordinates i ,  j ,  = d j y / d i j  ( j  = 1 , .  . . , n ) .  Now consider the system Sip, formed 
by d F  and the contact forms 6' = d ju )  -?ti+') dB ( j  = 0, . . . , n - 1, ?(') = g). Since Yl 
is a Lie point symmetry, the G j  can be expressed as nowherevanishing invertible g(D"+2)- 
linear combinations of the 01j (the original contact forms) and by definition Yl(F) = 0 on 
F = 0. In the new coordinates, Yl is equal to the coordinate vect0,r field corresponding to 
the ? coordinate and in the light of the last sentence we see that 5 2 ~  is equivalent to nF, 
that iyL$ equals 1 if j = 0 and 0 otherwise and, finally, that iy, d F  = 0 on F = 0. The 
final step in the classical reduction procedure is to observe that d F  and 6'. . . . ,G"-I are 
completely independent of ? on F = 0 and, therefore, can be interpreted as a system of one- 
forms corresponding to an (n - 1)th-order ODE with i and ?(') as independent and dependent 
variables, respectively. From the solvable-structure point of view, one sees that Yl makes 
a perfect first vector field in a solvable structure and that Go and the system formed by 
E ' ,  . . . , ~ ? ~ - l  and d F  can be identified with 0' and the system f l ~ x , ~ ,  as described above, 
respectively. While it is clear that Lie point symmetries of this and even further reduced 
systems can be used to form a solvable structure equivalent to the original system, there 
is no reason why those symmetries should be Lie point symmetries of the original system. 
This point wiIl be illustrated in the following example section. Using the solvable structure 
approach it is not necessary to restrict one's attention to Lie point symmetries at any stage. 

T Hart1 and C Athorne 

4. Examples 

In this example section we want to demonstrate two points. First, that Olver's curious 
example is explained by the presence of a solvable structure and, takiig this example, we 
will exemplify how the algorithm described above can be used to directly solve an ODE. 
Second, we will show how in the case of the examples constructed by Guo and Abraham- 
Schrauner, the (hidden) symmetry of the reduced ODE is systematically related to a solvable 
structure for the unreduced ODE. 

Before we embark on the calculations, let us briefly mention that the geometric 
representation of an nth-order ODE, given by equation (lo), can be simplified if F is given 
in solved form for the highest derivative; viz F = y(") - f ( x ,  y, . . . , y["-l)) for some 
smooth function f on D("+'). In this case, one can replace the y(") coordinate on D("+" 
with F and then restrict attention to the submanifold given by F = 0. In these coordinates, 
the contact forms u j  ( j  = 0, ..., n - 1) project rather conveniently into F = 0: the 
coordinate expressions for (YO to a"-' do not have to be altered at all and the expression for 

becomes dy("-') - f ( x .  y. . . . , y("-I)) dx. Actually these projected one-forms form a 
closed system of independent one-forms on D"+I (given by F = 0) and one, therefore, has 
effectively reduced the order of the problem by one. 

In solved form, Olver's example (Ill, example 2.58, p 147) is given by the following 
equation 

Restricting our attention to an appropriate domain, the associated system of one-forms 
(u0,cdj on D3 is given by 

01' = dy - y ( l )  dx 
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We already know that this system has the vector field YI = xa, + yay as symmetry and 
that Y, represents the only Lie point symmetry of the ODE given by equation (1 1). We now 
look for an equivalent system of one-forms (w ' ,  a;} such that iy,w' = 1 and iylai = 0. A 
possible choice is 

I dy - y( ' )dn  
w =  

y - x y ( l )  

a) = yy( ' )dx - xy ' ' )  dy - x2 dy('). 

Our next task is to find a symmetry Yz of a:. For the purpose of determining whether YZ is 
a symmetry, only the part of Yz that does not get killed by a; matters. Therefore, one may 
assume that YZ = y ( x ,  y, y(l))a,rt, for some smooth function y .  The determining equations 
are obtained by requiring that L c , ~ ;  = I ( x ,  y .  y" ) )a ; .  After some algebraic manipulations, 
one is left with the following system of linear first-order PDEs: 

It is easy to see that y = y( ' )  is a solution for this system. Contracting Yz with a: gives 
us the required integrating factor for a!. We now have a solvable structure {U', oZ] for the 
ODE, given by equation (1 l), where w2 is given by 

al yy(I) & - ~ $ 1 )  dy - xz dy(') J=I- 
-xZy(l)  - -$y(')  

In order to solve the ODE given by equation (1 l), we have to integrate the solvable 
structure ( w ' ,  0'). Starting with w2, we obtain 

Solving for y( ' )  gives y( ' )  = ztexp([wZ)exp(y/x). When restricting to the submanifold 
given by keeping [U' constant, we can replace &exp(jwZ) with some non-zero constant 
c. On this submanifold, w' is given by 

I dy - ceYIXdx 
w =  y - Cxe-JJx 

which can be integrated by substituting U = y / x  which leaves us with 

+ In Ix I. 
U - ce-U 

The last line integral cannot be performed explicitly and, hence, one cannot explicitly solve 
it for y either. Nevertheless, keeping 1 w' constant, the last equation can be regarded as 
a general implicit solution to the ODE given by equation (11) with the proviso that we 
obviously have not dealt with the singular solutions of the ODE. 
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In [Z], Guo and Abraham-Schrauner systematically construct eight second-order ODES 
which are generally only invariant under a one-parameter Lie point group but acquire a new 
symmetry when reduced to a first-order ODE (they also provide a list of special cases in 
which the second-order ODES are invariant under a solvable two-parameter group). They 
start with the separable first-order ODE, which in solved form is given by 

where f is a smooth function of the independent variable U. This ODE is invariant under 
a point transformation represented by the vector field (l/w)au. The first-order ODE is then 
transformed to a second-order ODE using two invariants W and V of a Lie point symmetry 
represented by the vector field U1 . The transformation is given by 

where U l ( W )  = U l ( V )  = 0. Substituting this into equation (12) results in a second-order 
ODE which is invariant under UI but, in general, is not invariant under (1/w)au. Hence, 
(l/w)a, is called a hidden symmetry. One can, however, easily construct a solvable 
structure for the second-order ODE which is closely related to the transformation (13). Since 
(12) is given in closed form, it can be represented by 

a = d w - -  (') du. 
W 

Note that a is usually not exact but contracting (I/w)a, with a gives the required integrating 
factor. Transforming a by (13) results in 

where 

Observe that a' = dy - y("dx and ai = dy(') - hdx represent the second-order ODE 
given in solved form by y") = h(x,  y, y(l)). By construction, U1 is a symmetry of this 
ODE and, as a matter of fact, iu,a = 0. Choosing a combination o1 of a' and ai such that 
&,pi = 1 and taking o2 = Wa, one, therefore, obtains a solvable structure (d, 02} for 
the second-order ODE given by y") = h(x ,  y, y(')). 

We summarize the results for the eight second-order ODES constructed by Guo and 
Abraham-Schrauner in [Z] in table 1. For legibility's sake, we substitute p for y('). In the 
first column, we list h(x, y. p) which defines the ODE by y") = h(x, y, p). In the second 
and third columns. we give w1 and wz in terms of the one-forms a' = dy - pdx and 
a' = dp - h dx which represent the ODE. The last column contains d d  in order to show 
that (d, w z ]  do form a solvable structure. 
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